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A COMMUTATIVE-EXTREMAL EXTENSION OF HILBERT-
SCHMIDT THEOREM

CONSTANTIN P. NICULESCU

The leading idea in writing this paper was that most mathematical
objects are determined by their singularities in a way recalling more or
less the Krein-Milman Theorem. That is merely a philosophical point of
view until the mathematical concept of a singularity is precised. We shall
be concerned here with the case where a singular point is meant as an
extreme point (in a generalized sense).

In our paper the notion of an extreme point is associated to an order
relation of a special character and the main problem which we are dealing
with is to decompose the given Banach space E into smaller pieces geome-
trically determined, particularly to represent the elements of E as_ series
of discrete elements. To different order relations correspond generally
different notions of extremality and thus we are able to bring together
notions such as of an extreme point (in the eclassical sense), atom (in
Banach lattice theory) and eigenvector.

Our main result asserts that under reasonable restrictions if 4 is a
self-adjoint compact operator acting on a Banach space B then Im 4 is a
complemented subspace having an unconditional finite dimensional de-
composition (in the sense of [LT 1]). See T heorem 5.1 and Proposition 5.4
below. .

Section 1 contains preliminaries on Alfsen-Effros type order rela-
tions. The first two examples go back to[AE] but the systematic study was
started around the 83’s by the author. See [N1] —[N3].

In section 2 we introduce the notion of a facial cone (associated to
an Alfsen-Effros type order relation) and outline an analogue of the prin-
cipal ideal theory.

Section 3, devoted to the concept of an extreme point (associated
to an Alfsen-Effros type order relation) contains a complete description
of the finite dimensional case. See Theorem 3.9 below. That theorem brings
together classical results due to Cauchy, Caratheodory and Yudin.

In section 4 we show how to associate to any order relation of Alfsen-
Effros type on a given Banach space E a commutative C*-algebra Z(E)
of L(E, E) (called the centralizer) and discuss up to what extent a commu-
tative C*-subalgebra of L(E, E) is necessarily a centralizer. Based on the
results in this section we can assert that our theory of extremality is essen-
tially commutative.

Section 5 is devoted to the spectral decomposition of compact ope-
rators in Z(E). Our results cover classical Hilber-Schmidt spectral theorem
and also all unconditional finite dimensional decompositions that arise
in Banach space theory. Since the main ingredient in our proof is Z(E)
(rather than an explicit 4 E-order relation) one can reformulate all those
results directly in terms of commutative von Neumann algebras (and
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248 CONSTANTIN P. NICULESCU 2
also of Bade complete Boolean algebras of projectibns). However, due to
Theorem 4.3 below, this is merely a question of gustibus.

The author is much indebted to Maria Joita and Dan Vuza for many
valuable suggestions and criticism.

1. ALFSEN-EFFROS TYPE ORDER RELATIONS

Tt E be a Banach space over the field K (K is R or €).

1.1. Definition.” An order relation < on F is said to be of Alfsen-
Bffros type (abbreviated, < is an A E-oraer relation), provided the following
conditions are satistied :

AE 1) « <y implies y — 2, <¥y;
AFE 2)'z <y implies a # <'ay for every aeK;
AE 3) 0 < o < B in R implies az < pa for every w e H;

AE 4) It oy <yy, @, <y, and y; <y; -+ yp then x <2 + 25
and oy + @y <Y1+ Y25

AE 5) « +'y <2y implies 2| <yl
AE 6) @, <y (a€A) and |, —2[ — 0 imply z <.

Clearly, the definition above can be adapted in an evident manner
for locally convex spaces with a specified system of seminorms. Also, one
can rephrase conditions A1) — AE6) above in terms of codirection
by letting

x ||y (i.e., » and y are codirectional) it and only ife <o-+y.

An AFE — order relation is not compatible with the linear structure.
In fact, AF1) yields

0 < z for every x in E.
E:camples 1

‘@) The 1-dimensional Banach space K admits only one AF -order
relation ‘ 1
’ @ <.y if and only if » = «y for a suitable « € [0,1].
b) If H is a Hilbert space and & is a commutative von Neumann
subalgebra of L(H, H) then we may consider on H the following A E-order
relation i
x <,y if and only if # = Ay for a suitable Aed, 0 <A <L
‘Here I denotes the identity of H. Details will be found in [N2]."
¢) On each regularly ordered Banach space F (in the sense of
E. B. Davies [D]) we can consider the AE-order relation:z < .,y if and
only if every order interval[u, v] of B containing 0 and y contains also 2.
" See [N1] for details. For E a Banach lattice, <, y is equivalent
to |yl = |#| + |y — x|

)
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d) The following two examples make sense for every Banach space
E and they were first crnsidered by Alfsen and Effros [AE]

@ <py itand only if [y = o]+ |y — 2|
@ < y if and only if every closed ball containing 0 and y contains also z.

1.2 Definition. Given a Banach space E endowed with an A E-order
relation <, we shall say that the norm of E is ( <-) order continuous pro-
vided every <-decreasing net (x,), of elements of E is norm convergent.

If the norm of E is <-continuous then every <-increasing <-ma-
jorized net of elements of £ is also norm convergent. In fact, if (2,), is
such a net and x, <y for every «, then the net (y—u,), is <-decreasing.
The argument is as follows: x, <y <y impilies y — o < y and
Tp — 4y <25 <Y, 30 by AH4) above we infer that y—w, < (y — @) +
o+ (g — @) =y — .

For u, v € F with u < v we define the ( <-) interval of extremities
% and v as the set

[u,v] ={w;xecl, v <z <v.

Every interval [u, v] is convex and norm closed. Use AFE4) and
AE6) above. An immediate consequence is the fact that every decreasing
net (), of elements of a Banach space with an order continuous norm is
norm convergent to <-inf x,. -

For E a Banach lattice and < = <,, Definition 1.2 above agrees
with the classical concept of order continuity as known in Banach lattice
theory. See [LT2], 7, or [S], p. 92. ,

As was noticed in [AE], p. 107 the norm of every Banach space is
<c-continuous. Others examples come through the following result.

1.3 Dint’s Generalized Lemma (See [N3]). Suppose that (), is &
<-decreasing net of elements of E, weakly converging to x. Then || x, — x | =0.

1.4 CoroLLARY (See [N3]). Let E be a Banach space endowed with an
AE-order relation < such that all <-intervals [u, v] of E are w2akly compact.
Then the norm of E is <-order continuous.

By Corollary 1.4 we infer that the norm of every reflexive Banach
space F is a order continuous whatever order relation < we consider on it.

2. FACIAL CONES

In what follows FE will denote a Banach space endowed with an
AE-order relation <.

By a cone of E we shall mean every non-empty subset C of F such
that B = «C; C is said to be proper (respectively comvex) provided

a»0
On(—0C) = {0} (respectively (C + C < C). By a ( <-) facial cone of E
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we shall mean every convex cone ¢ of E that satisfies the following two
conditions :

FC1)z <y and y € C imply x € C;
FC 2) « ||y for every x and y in C.

For < = <, we retrieve the classical notion of a facial cone. See
[AE], page 106. )

By F(2) and anti-symmetry of < we infer that every facial cone is
proper. ‘
Each z € E belongs to a facial cone, e.g. to

Clz) ={y;yek 3a>0,y> 0z

C(x) is the smallest facial cone containing and thus the facial cone gene-
rated by .

The intersection of a facial cone of E with the unit sphere § of B
will be called a face (of the unit ball K of K); in this setting the face gene-
rated by an x €S will be

face {x} = C(x) n S.

A facial cone may not be closed, e.g., see the case where E=12[0,1]
<= <, and C = C(); in this particular case C =E,. We,
shall prove later that for finite dimensional Banach spaces all cones O(z,
are closed.

The facial cones allow us to develop an ideal theory that is in many
respects comparable with that in Banach lattice theory. For, we need an
observation, important also for itself.

To any convex proper cone C of a vector space E we can associate
an ordering on E compatible with the linear structure

@ < y (mod O) if and only if y — xeC.
2.2 LeMMA. If E is endowed with an Alfsen-Effros type order relation
< and x and y are two elements of E then the following assertions are equt-
ralent : .
1) x<Y;
i) 0 < & <y (mod O) for a suilable facial cone C conlaining y;
i11) 0 <z <y (mod O) for every factal cone C containing y.

Proof. 1) = i), If » <y and C is a facial cone containing y then
x, y — x € C because O is hereditary.

Clearly, 1it) = 1).

1) = 1) . By hypotheses, x and y — x arein C. By FO2), x|y — @
and thus « <y =2+ (y — ). 1

The principal tdeal generated by an element x of E is defined as
the set E, = Span C(z). The real part of E;,

Re By — O(x) — C(x)
will be ehdowed with the ordering associated to C(z) and the norm

Iyl =inf {a; & > 0,3 ¥ < ax, © < o, y=u—0}.
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The fact that [y|. = 0 implies:y = 0 can be proved as follows : Let U,
¥ € O(7) with y = u, — v, and wu,, v, < z/n for every n e N* By AE5),
(% [l; [loa | < [la[l/n, 50 Dy letting n, — oo we . conclude that y = 0.

2.3 Lemma. For ry'e E, and o > 0 the following assertions are equi-
valent : P! -

1)y =u— v, where u, v < a x;
M) —ax <y <oz (mod Cx));
1) y + ax < 2awx.

The proof is obvious.
From Lemma 2.3. and AE5) we infer that the canonical inelusion
tr: Re B, — F is continuous and |4, < || z||

2.4 LEMMA. Ze B, 1s an ordered Banach space with a strong order
unit (that is x).

Proof. We have to prove only the completeness of Z¢ E,. TFor,
let (yu). be a Cauchy sequence in #e E,. Since i, is continuous, (Yn)n
is also a Cauchy sequence in ¥ and thus there exists a y e E such that
[ 4n—y| — 0. On the other hand for each ¢ > 0 there exists an N such
that

-

[ ¥m — ynle < e for every m, n > N
ie., ” :

—€ T < Yw — Y S § @ mod C(x) for every m, n > N.

Use Lemma 2.3. above. By letting m — co we infer that

—e2 Sy —yn <€ xmod C(r) for every = >N ' which yields
y<€ B, and ||y —yu)l, — 0.1 ‘ :

The following proposition combines classical results due to Kadison,
Kakutani and Krein. :

2.5 PROPOSITION. 1) Ze FH, 15 algebraic isometric and order isomorphic
to a space A (K, R) of all continuous affine real functions defined on' the
w’ — compact convex set K of all states of Re E,.

11) Suppose in additvon that

1) either #e E, is endowed with a bilinear multiplication for which
x 18 an idenlily and

Yy R€Re Hyyy > 0 amd 2 > 0 imply yz > 0; or,

2) Re B, 1s a vector lattice with respect to the ordering mod C(x).
- Then Re E, is a commutative Banach algebra algebraic isometric and
order isomorphic to a space C (S, R), where S denotes the set of all pure
states of Re H,.

Proof. For 4), see [Kad2]; % 1) follows from [Kad 1], while @ 2)
needs the classical representation theorem of 4 M-spaces due to Kakutani
and Krein. Jjj ; . »
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3. EXTREME POINTS

Let E be a Banach space endowed with an AE-order relation <.
‘We shall denote by K the unit ball of E and by § its unit sphere.

3.1 Definiticn. A norm 1 element x of E will be called ( <-) ex-
tre mal for K provided C(x) = R, -@.

In texms of faces, an extreme point is precisely a norm 1 vector z
such that

face {z} = {x}.

Since K is the only subset of E whose extreme points are investi-
catcd, we shall denote by Ex E(or Ex < E) the subset of all extreme
jcnis of the tnit ball of E. In order to avoid sub-scripts, we shall use
rctaticn like Ex; Ein case < = <. ‘

3.2 TLEMMA. Let H Le a Hilbert space and S the von Neumann sub-
alglia of L(H, H) generated by self-adjoint operator A € L(H, H). Then
Ex, H ccnsists of all normalized etgenvectors of A. "

Prcof. Let 1€Ex,, H. Because 0 < A_, 4, < lA)-I and A_,
A, € A it follows that

A, v, A_v < |40

and thus Ao = A,v — A_v = av for a suitable « € R.

Conversely, let Av = «v with ||v|=1 and acR. Then f(4)-v=
= f («)- v fcrevery fe C(o(4))ie., v is an eigenvector for every operator
in the C*-algebia C*{A, I} generated by A and I. Since & is the wo-
clesute of C*{4, I}, then the same is true for every operator in & . Conse-
quently @ <, v implies & = 1o for 2 suitable A > 0ie.,veEx, H. I

The notion of an extreme point is very closed to that of a discrete
element.

3.3 Definition. By a ( <-) discrete element of X we shall mean any
element z of E such that

u, v < «ard Cu) n C(v) = {0} imply either « or v is null.

Clearly, evay elauent of Ex E is discrete. Conversely every nor-
malized discrele elqment is also an extreme point. Before indicating the
delails, we shall notice witheut preof the particular case of Banach lattices :

3.4 Prorositics. Let E be a Banach lattice.

i) An element x of Eis <, -discrete if and only if it 1is an atom i.e.,
u, v < |o| end u\v = 0 imply % or v is null.

i1) Ex, E coincides with the set of all normalized atoms of E.
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Consequently, in the real case,
Ex; ¢y =0 " Ex. ¢y={4(3ma)m; ne N*}
Ex; C[0,1] = {41} Ex, C[0,1] =0
Ex, L*[01] = {z; we L2[0,1], | x| = 1}
Ex, I2[0,1] =@.

We shall prove that in general every normalized discrete element
is an extreme point. Our argument is essentially finite dimensional and
depends upon an analogue of the orthogonal decomposition.

3.5 LEMMA. Let E be a finite dimensional Banach space endowed
with an AE-order relation < and let v € E, x # 0.

Then the cone C(x) is closed and for every ec E there exist elements
w and v in [0, ¢] such that

e=u—+v
weC(x) and C(v)n C(x)={0).

Proof. We shall show first that the cone C(x) is closed. For, let
(¥a)a be a sequence of elements of C(z) such that |y, — y| — 0 in E. Then

yn < || Ynllz-x for every m e N*,

Since dim E < oo, the canonical inclusion i, : E, — F is an isomorphism
into and thus y € E, and |y» — y . — 0. Put M = sup|y.|.. By AE 3)
and AE 6) above we infer that y < Mx i.e.,ye C (x). ;

As concerns the decomposition part, consider the set A, — {#;
zeC(z), 2 <e}; 04, and A, is inductively ordered by <. In fact,
the order interval [0, ¢] is compact and thus every increasing net of ele-
ments of [0, e] is norm convergent to its Lu.b. By Zorn’s Lemma, 4,
must contain at least one maximal element, say . It remains to prove
that v = e¢ — u satisfies C(v) n O (2) = {0}. In fact, if the contrary is
true then it would exist az € C (x) such that 2 # 0 and # < v. Since

z <e—u
u < u
e — ul u,

by AE 4) it follows that # 4 v < e and u <z + «. Since C(x) is convex,
z + w e O(z) and this fact contradicts the maximality of 4. Consequently
Cw)n O(x)=1{0}. H

3.6 Lemma. Let E be a finite dimensional Banach space endowed
with an AE-order relation <. Then Ex K consists precisely of all normalized
discr ete elements of E.
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Proof. Suppose that e is a normalized discrete element of E and
e¢ Ex E. Then there exists an x € F such that « < e and ¢ R, -e. Put

o = sup {i; re < uj.

Then # — ae # 0 and O (r—ac)nRy-e = {0}. In fact, if pe <
< Mx — ae) with g, e R¥ then (p + Aa)e < Awie, (u/A+ a)e<z, in
contradiction with the definition of «. By Lemma 3.5, e admits a decom-
position

e=u-+

with % e C(x — ae) and C (v)n Oz — «e) = {0}. We shall prove that
both # and v are different to 0, which will contradict the fact that e is
discrete.

If v =0, then e =ueC (z — «¢). Or, O (x—ae)nR,-e = {0].

If u = 0 then ¢ = v and thus C(e)n C(x—ae) = {0}; Or, o — ae <
< x<e, so that € (x — ae)c C(e).

Consequently e is an extreme point of K.

The fact that every extreme point is also a discrete element was
already remarked. Ji

3. woREM. Let E be a Banach space endowed with an A E-order
3.7 TurOREM. Let I b B h dowed with AE-ord
relation <. Then Ex E consists precisely of all mormalized discrete ele-
ments of K. ;

Proof. We have only to prove that every normalized discrete ele-
ment e of E is also an extreme point i.e.,

C((’) = l‘+-(_-._

For, notice that < induces on each finite dimensional subspace
F of E an AE-order relation <, given by

x <,y if and only if x and y belong to F
and x<yin K.

By Lemma 3.6, Cle) n F =R, -e. for every finite dimensional
subspace F which contains e and thus C(e) is indeed R, -¢ .

It is perhaps of some interest to outline the connection with the
notion of an extremal ray : Let C be a facial cone and x € €, x # 0. Then
x is discrete if and only if the ray R, .2 generated by x is extremal i.e.,

@ = tu -+ (1—t)v with u, v € ¢ and 0<t<<1 implies u,ve R,-z.

As an immediate consequence we infer that every extreme point
£ € Ex F is also an extreme point in the classical sense for C'n K where
C is any facial cone containing z. The converse does not work e.g., con-
sider the Euclidian plane R2 endowed with the AE-order relation <..
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Once the notion of an ( <-) extreme point precised it is important to
know up to what extent the given Banach space FE is generated by Ex E.
A remark above suggests to apply Choquet’s extremal decomposition of
well capped cones. See [Ph], ch.11. Unfortunately, that elegant approach
does not cover all important particular cases where a nice decomposition
of the given space is possible. We shall prove instead an analogue of
Hilber- Schmldt Theorem which brings together several types of flmte
dimensional decompositions including the oxthor}onal and the lattice one.
See Theorem 5.1 below. In turn, our approach seems to leave out classical
results like Krein-Milman Theorem.

The proof of Theorem 5.1 depends heavily on the finite dimensional
case treated below by using the decomposition method described in
Lemma 3.5; that case is covered also by Choquet’s theory. The remain-
der is a generalization of the notion of a self-adjoint operator and will
e presented in the next section.

3.8 Levma. If C; and Oy are facial cones such that C;< Oy and Oy # Oy
then O,cFrO,.

Proof. Suppose that the contrary is true. Then exist an
z € 0, and an r > 0 such that B,(z) n C, = C,. If ze€ C,\ C, and ||z|<<r
then x 4 2 € B,(x)n 0, '€,. Since z, 2 0, 'we 'have 2 & o4 2. dince
0, is hereditary, the last implies that z e €}, a contradiction. §

3.9 TarorEM. Suppose that dim E = n and E is endowed with an
AE-order relation <. Then for each » € E there exist scalars ay,. .., an€
€ [0, lz]] and' <- extreme points ey, ..., e,"e O(x) such '‘that

T =06+ ... + onbn.

Proof. The assertion is clear for x an extreme point.

Suppose that .z ¢ Ex K and [« = 1. We shall. prove first that
there exist discrete elements f such that f < x and f # 0. In fact, by |
Lemma 3.6 above there exist elements «, v €0[0, 2]\ {0} such that C(u) n
nO(v) = {0}. By Lemma 3.8, C(u)c Fr C(w) and thus dim CO(u) <
< dimC(x) < n. Consequently in at most n steps we are led to a discrete
element f; with f; < ¥ and f;, # 0. Put e, = f,/| f; ] and

a; = sup {A; Ae < x}.

Then ¢, e Ex B and O(x—ae)n Cle;) = C(x—awe)n Ri-e = {0}
If w— o€, is not discrete the pI'OC(?bb described above bhould be contlnued
with @ — a,e; instead of wx. §

For < = <«;, Theorem 3.9 thWS that every z in the unit sphere
of Bis a convex combination of extreme pomts In fact, if

=6+ ... F anes
with €, ..., ene C(x)and ay ..., %, > 0 then by FC 2),
Cl=lzl =l 4 o F ] = L A

Since eeBx E n O(x) if and only if —eeEx En O(— @).
Theorem 3.9. includes the classical result due to Caratheodory that states
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that each point in the unit ball of an n-dimensional Banach space is a
convex combination of at most » + 1 extreme points. (In turn, Theo-
rem 3.9 is an easy consequence of Caratheodory’s result).

It includes also the following result due to Yudin: Every finite
dimensional Banach lattice has a basis formed by atoms (and thus it is
algebraic topologic and lattice isomorphic to a space Rr).

From Theorem 3.9 we can deduce easily the fact that given an n X »n-di-
mensional self-adjoint matrix A4 there exists an orthonormal basis of €”
formed by eigenvectors of A.

4. THE CENTRALIZER

As usualy, F will denote a Banach space endowed with an AE-
order relation <. We can associate to < an AF-order relation on
L (E, E) (endowed with the family of all semi-norms A4 — Az, x e B)
by letting

A < Bif and only if Ar < Bx for every x.

The centralizer associated to < is defined as the lincar span Z(E)
of the facial cone

Z(E), = {A; Ae (E, E), 3a > 0,4 < al}.

Notations like Z«(F) and Z,:(E) are destinated to precise that the
AFE-order relation under study is <, respectively <.

As in case < = <y, first studied in [AE], one can prove
that % Z(E) is an ordered Banach algebra endowed with the cone
Z(E), and the norm | [|; associated to the strong order unit I.

4.1 THEOREM. Re Z(E) is algebraic isometric and order isomorphic
{0 an ordered Banach algebra C(8, R), where 8 denotes the Gelfand specirum
of Re Z(E).

Moreover , | || and the operatorial norm coincide on ReZ(E).

Proof. By Proposition 2.5 1), it suffices to prove that || || and | |Ir
coincide on Re Z(E). For, let A e Re Z (E) = O(S, R) and suppose that
o — | Al; — inf {A>0; A <A} > 0. Then for each << (0, a) there exists
a Ue®Re Z(E) such that 0 < U < I, U # 0, an AU =2 (a—<) U 20
ie., (a—e)U < AU. Since U # 0, there exists an «x € E such that y =
— Ux # 0. Then («a—e) y < Ay, so by AE5), (a—¢) lyll < Ay |l
Consequently [[A] > a—e. The inequality || 4| < | A[; also follows
from AE5). I

By Theorem 4.1, ReZ(E) is formed by self-adjoint operators provided
E is a complex Banach space. Recall that a bounded linear operator A
acting on a complex Banach space FE i3 said to be self-adjoint (or hermi-
tian) provided || e | = 1 for every t € R. That motivates the terminology
of ( <-) self-adjoint operators for the elements of Z¢ Z(E).




11 EXTENSION OF HILBERT-SCHMIDT THEOREM 257

By Theorem 4.1, the idempotents of Z (E) (the so called <«<-
Cunningham projections) are precisely those projections Pel (E E)
such that

Pr < a for every x e E.

See [N2—N3] for details and comments.
The <-Cunnigham projections of E constitute a Boolean algebra of
projections P¢ (E) (denoted also by P(E) when < is understood) if we put

PVQ=P+Q—PQ
PAQ=PrQ
P =1-P.
4.2 LEMMA. Suppose that the morm of E is < -continuous. Then
i) Z(E) = Span P(E);
11) P(E)is a Bade-complete Boolean algebra of projections.

Proof. ©) Since the norm of ¥ is <-continuous, Z(F) is an order com-
plete C(8)-space ; for, combine Theorem 4.1 with the fact that every in-
creasing majorized net (A,), in Z(E) is point-wise convergent (necessarily
to its l.u.b.). Then S has a basis of open-closed sets and thus by a remark
above P(E) separates the points of §. The proot ends by applying Stone-
Weierstrass Approximation Theorem. :

11) We have to show that for each net (Pa)y in P(E), \V P, and
AP, exist in P(E) and moreover

(V Py) (E) = Span U P,(E)
(AP,) E = n PyE).

For, it suffices to consider increasing nets (P,),. Then P(z) = lim P,(z)
exists in the norm topology of E for each x, P2 = P and by AESE),
P, < P <1 for each . Consequently P = \/ P, in P (B) and P(E) =

= Span u P,(E). )

The result of Lemma 4.2 can be considerably improved and we shall
state here without proof the existence of a one-to-one correspondence
between AF-order relations and commutative algebras. That motivates
the attribute of commutative for our theory of extremality. The details
are to be found in [N2].

4.3 THEOREM. i) Suppose that the norm of E dis order continuous.
Then Z(E) is a commutative von Neumann algebra and the canonical inclu-
sion ©: Z(E) - L(E, E) maps w*-convergent nets into wo-convergent nets.

11) Suppose that o is a commutaiive von Newmann algebra included
by I(E, E) such that the canonical inclusion i: of — L(E, E)ts a morphism
of unital Banach algebras mapping w*-convergent nets into wo-convergent
nets.

5—¢. 1031
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Then there exists an A K-order relation <, on H such thot the morm
of B is < -continuous and 7, (B) = .
Precisely,

@ <y if and only if ¥ = Ay for a suitable A e &, 0<A<I

The order relation <, is maximal among those having &/ as a cen-
tralizer. In fact, it Z<(H) = & then

x <,y implies x <y.

Tew comments concerning the connection between ExE and Z(E)
are in order. Every extreme point e € Ex K is also an eigenvector to every
A e Z(E). Consequently, if fhere exists an A € Z(E) with no eigenvector
then Ex E = 0. On the other hand, it is possible to find eigenvectors for
Z(E) which are not discrete elements e.g., consider the case where B s
the Euclidian plane and < = <, ;in that case Z(E) = R-I while card
Ex E = 4. A nice exception constitutes the order relation <.

5, THE SPECTRAL DECOMPOSITION OF <-SELF-ADJOINT OPERATORS

The classical Hilber-Schmidt Theorem: states that every self-adjoint
compact operator A acting on a Hilbert space H diagonalizes with respect
to a suitable orthonormal basis formed by eigenvectors i.e., A admits a
representation of the form \

(HS) Ax = Y, ha (&, Vn) Un.

If o/ denotes the von Neumann subalgebra of L(H, H) ~ generated
by A then the norm of H is <,-continuous (H is reflexive and thus Pro-
position 1.3 applies). Fach finite rank projection

Pux) =Y <&, Ve Ok,
belongs to & and so they are. < ,~-Cunnigham projections. Since (HS)
yields . .
A= 3 dnbx

in the norm topolf)gy of L(H, H), it follows that A.€ Re Z (H).

"It is remarkable - that the results above remain valid in the general
setting. i _ .

5.1 Hilbert-Sechmidt-Generalized Theorem. i) Let E be a Banach
space endowed with an A B-order relation < such that the morm of B is <-
continuous. Then for every compact operator A € ReZ(E) there exist a real
sequence (on)n € and a sequence (Py)a of mutually disjoint finite rank Cun-
ningham projections on B such that ,

Aw — Y, anPa(@) for every v € E.

"
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1) Conversely, every operator A e I(E, E) which admits sich a repre-
sentation is compact and belongs to Re Z(E).

Proof. ©) The non-trivial case is when A # 0. Notice first that U < V
and V compact imply U is compact too. In fact, for each sequence (&), of
elements of E we have U(x, — x,) < V(x,—a,) and thus NWOxm — Ul <
< ||Vay—Va,| for all m, neN*,

~ Since 4,, —4_, < A wemay réstrict ourselves to the case where
AeZ(B),. ‘ i
Since Z(FE) is order complete, 4 is the uniform limit of sums of the

form V) a:P; with 0 < Y «iPi <A and «; >0 for every i. Then
i=l1 $—1
there exist scalars A >0 and finite rank Cunnigham projections () # -0
such that A@ < A. The image of ¢ is an invariant subspace of A and
thus the argument above shows that 4Q = Y M@, for suitable @, e P(E),
. # 0 and 2, > 0. Consequently there exist' scalars « >0 and finite
rank Cunningham projections P # 0 such that AP — al; clearly,
« €o(A4)\{0};and we can choose P to be maximal with this property, Since
Is compact, card ¢ (4) < N, and thus the set (a,, Pa), of all such pairs

is at most countable. We shall show that

A=Y a,P,

is the desired _decomposition. In fact, the projections P, are mutually
disjoint and Zoc,,P,. = sup «,Pn < A because E has order continuous
norm. Put B =A4 — X «,P,. Then B = A(I — @) where @ = VvV P, ;
B is compact and belongs to Z(E),. To end the proof of ©) we must show
that B = 0. For, use the argument above in case B # 0 to contradict
the maximality of the P,s. '

1) It suffices to show that if 4 admits a representation

Ax = Z ocnP,.(-’I})

with (an), € (¢,); then 4 = Y} a,P; in the norm topology. Or, by AE 3)
and AE 4), above,

Ax — Zn'(lk.P.k.’E
k=1

= ¥ = wPuw| < (Sup )+ @ |

for every n eN* and z € E. |
Notice that under the hypotheses of Theorem 5.1 i) if 4 € % Z(E)
admits a representation

A=Y anPs
with all P, # 0 then 6(4)\ {0} = {as; a» # 0} and

[ Al = sup | an| = ry(d).

By combining Theorem 5.1 with Theorem 3.9 above we obtain the
following : i A FE
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5.2 COROLLARY. Let A be as in Theorem 5.1. Then.
Im A = Span [(Im4) n (Bx E)]

In other words, Im A is generated by its extreme points.
The following result arised during conversations with M. J oita.

5.3 TuroreM. Let B be a Banach space endowed with an AE-order
relation < such that the morm of E is <-continuous. Then an operator
A € Re Z(E) is nuclear if and only if 1t admits & representation

Ax =Y, NPu(x), v B

with (Aa)n € €9y (Po)u €P(E), Py N P, =0 for m # n

and
2 (2, |-dim  P,(E) < co.

The classical Hilbert-Schmidt Theorem covers all orthonormal
expansions because every orthonormal basis (e,), of a Hilbert space H
can be regarded as a fundamental system of eigenvectors of a self-adjoint
compact operator A e L (H,H).

It is worthwhile to precise the type of decomposition Theorem 5.1
yields. For, we need the following definition generalizing the notion of an
unconditional basis : By an unconditional decomposition of a Banach space E
we mean any sequence (H,), of closed subspaces of E such that every
2 € E has an unique representation of the form

[e <]
=Y, @ with z, € E, for each =,

n=1

the series being unconditionally convergent ; if in addition dim K, << co
for all n, (E,), is said to be an unconditiona lly finite dimensional decom-
position (UFDD) of E. Under the above notation, the latfice constant
vz((Eu)s of an unconditional decomposition (E,), is defined as the smallest
C > 0 such that

£ (2 ”
Z AxLy Z Brx
E=1 E=1

for all scalars || < [Bil, be{l, ..., n}, n eN*.

Even nice spaces like € [0,1] and L'[0,1] fail to have an UFDD.
The best can be said at present about a space having an UFDD is that it
is isomorphic to a subspace of a space with an unconditional basis. See

[LT 1], p. 51. _ e
A more careful look at the proof of Theorem 5.1 yields the following

iso

5.4 PrROPOSITION. Let A be as in Theorem 5.1. Then

E=ImA® Ker A
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18 an unconditional decomposition of lattice constant 1 and Im A admits an
UFDD of lattice constant 1.

We shall show that via a renorming process all complemented sub-
spaces having an UFDD arise in this way.

Let X be a closed subspace of a Banach space F and suppose that X
admits an UFDD (X,). and there exists a projection P of ¥ onto X. Con-
sider also the canonical projections P, : & — x, of X onto X,. Then E
can be renormed by

lzll =sup {[I} aalulr|+[x—Prl; [aa]| <1, neN*}.
On (&, || ||) consider the AE-order relation < given by
x <y if and only if P,Pr = 2, P,Py and
(I—P)x = A (I—P) y for suitable scalars
Ay A€ [0,1] and n € N*.

Under the above renorming, the UFDD decomposition (X,), of X
coincides with that produced (via Proposition 5.3) by the operator

® 1
A = Yy = P,P.

2

n=1 N°
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